
JECAM SAR Inter-comparison Experiment-India/Vijayawada

Retrieval of Biophysical Parameters for Rice using Polarimetric SAR Data

Dipankar Mandal, Vineet Kumar, Y. S. Rao, Avik Bhattacharya Microwave Remote Sensing Lab, Indian Institute of technology Bombay, Mumbai, India

Crop biophysical parameters

- Crop phenology—Growth stages
- Leaf area index (LAI) and/or Plant Area Index (PAI)
- Crop geometry
 - Plant height
 - Plant density (row and plant spacing)
 - Orientation of plant elements (leaf/stem)
 - Row direction
- Vegetation biomass
 - Wet biomass/fresh weight
 - Dry biomass
 - Vegetation water content

Importance

- Proxy for crop growth monitoring
- Production forecasting
- Agronomic managements
 - Fertilizer
 - Pesticides
- Risk assessment

Vegetation Modeling: Water Cloud Model (WCM)

- First proposed by Attema and Ulaby (1978).
- **Assumptions:**
 - The vegetation canopy is modeled as a water cloud
 - The N number of particles to be **identical and** uniformly distributed
 - A **single scattering** from the particle is considered

$$\sigma^{0} = AL^{E} \cos \theta \left(1 - \exp \left(-\frac{2BL^{F}}{\cos \theta} \right) \right) +$$
Vegetation Two way attenuation factor

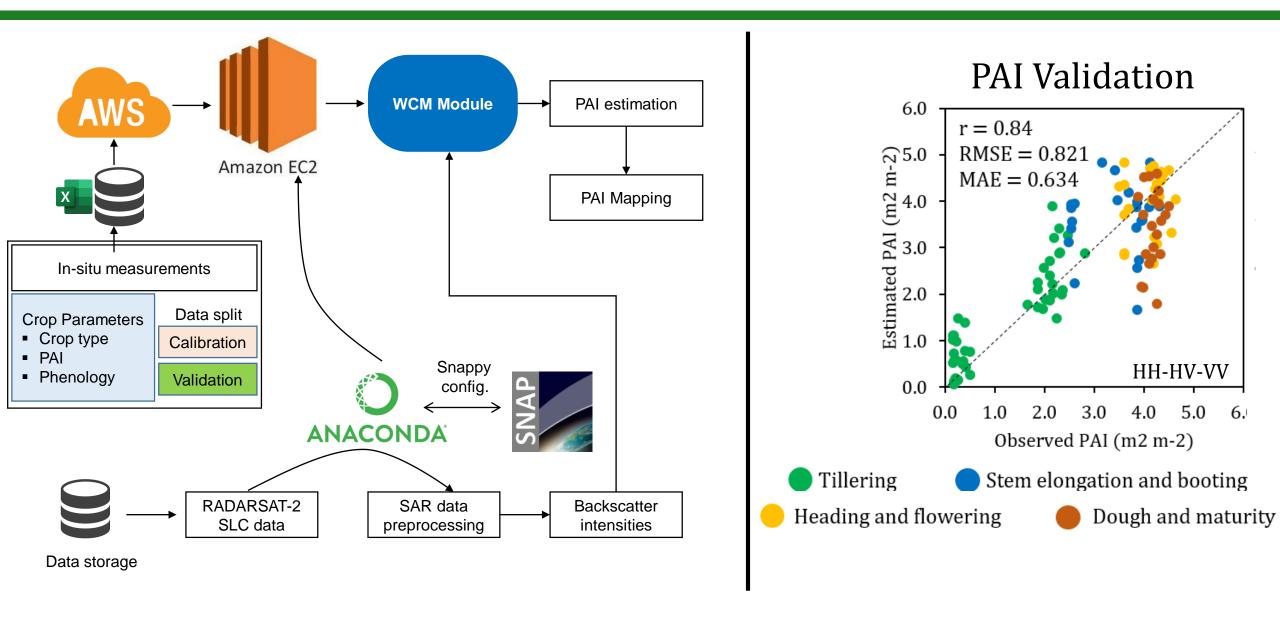
Two way attenuation factor

$$(CM_v + D) \times \exp\left(-\frac{2BL^F}{\cos\theta}\right)$$

Soil contribution attenuated by vegetation

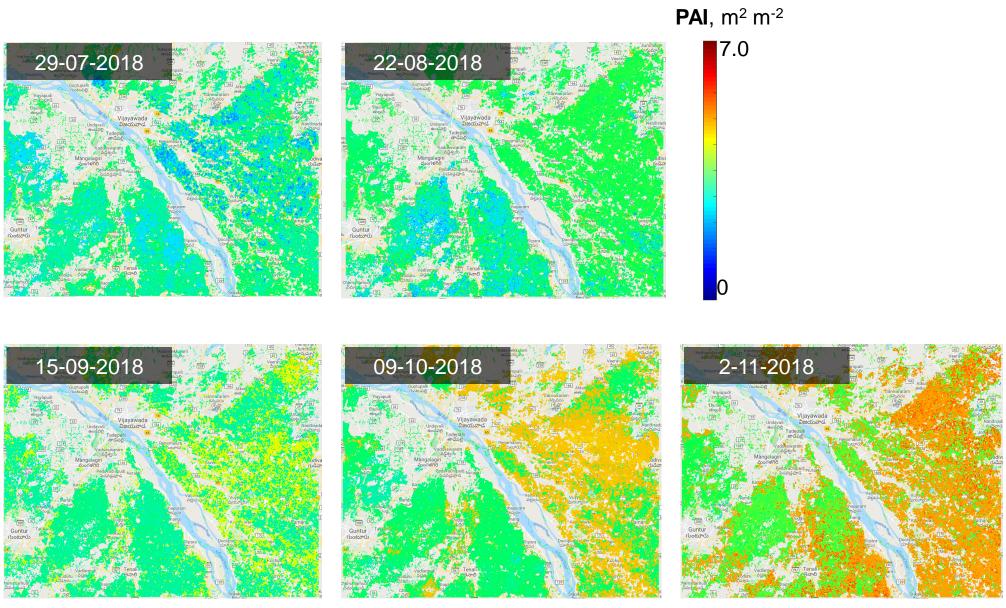
 M_{ν} = soil moisture L = LAI or PAI θ_i = incidence angle

Non-linear least-squares regression \rightarrow Calibration (Find A, B..D)



EO-data

Table 1: Specification of C-band quad-pol RADARSAT-2 acquisitions over the test site during the field campaign


Acquisition date	Beam mode	Incidence angle	Orbit	In-situ
		range (.deg)		measurements
05-07-2018	FQ15W	33.7 - 36.7	Ascending	04 Jul., 05 Jul.
29-07-2018	FQ15W	33.7 - 36.7	Ascending	01 Aug., 02 Aug.
22-08-2018	FQ15W	33.7 - 36.7	Ascending	22 Aug., 23 Aug.
15-09-2018	FQ15W	33.7 - 36.7	Ascending	14 Sep., 15 Sep.
09-10-2018	FQ15W	33.7 - 36.7	Ascending	08 Oct., 09 Oct.
02-11-2018	FQ15W	33.7 - 36.7	Ascending	02 Nov., 03 Nov.
26-11-2018	FQ15W	33.7 - 36.7	Ascending	25 Nov., 26 Nov.

Schematic workflow

PAI mapping

Dipankar Mandal

- Indian Institute of Technology Bombay
- https://sites.google.com/site/dipankaragrotech05